d03 — Partial Differential Equations d03ppc

NAG C Library Function Document

nag pde parab 1d fd ode remesh (d03ppc)

1 Purpose

nag pde parab_1d fd ode remesh (dO3ppc) integrates a system of linear or nonlinear parabolic partial
differential equations (PDEs) in one space variable, with scope for coupled ordinary differential equations
(ODEs), and automatic adaptive spatial remeshing. The spatial discretization is performed using finite
differences, and the method of lines is employed to reduce the PDEs to a system of ODEs. The resulting
system is solved using a Backward Differentiation Formula (BDF) method or a Theta method (switching
between Newton’s method and functional iteration).

2 Specification

#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1d_fd_ode_remesh (Integer npde, Integer m, double *ts,
double tout,

void (*pdedef) (Integer npde, double t, double X, const double ul],
const double ux[], Integer ncode, const double v[], const double vdot[],
double p[], double q[], double r[], Integer *ires, Nag_Comm *comm),

void (*bndary) (Integer npde, double t, const double u[], const double ux[],
Integer ncode, const double v[], const double vdot[], Integer ibnd,
double beta[], double gamma[], Integer *ires, Nag_Comm *comm),

void (*uvinit) (Integer npde, Integer npts, Integer nxi, const double x[],
const double xi[], double u[], Integer ncode, double v[],
Nag_Comm *comm) ,

double u[], Integer npts, double x[], Integer ncode,

void (*odedef) (Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[], const double ucp(],
const double uepx[], const double rep[l, const double ucpt[],
const double ucptx[], double f[], Integer *ires, Nag_Comm *comm),

Integer nxi, const double xi[], Integer neqn, const double rtol[],

const double atol[], Integer itol, Nag_NormType nmorm, Nag_LinAlgOption laopt,
const double algopt[], Nag_Boolean remesh, Integer nxfix, const double xfix[],
Integer nrmesh, double dxmesh, double trmesh, Integer ipminf, double xratio,
double con,

void (*monitf) (double t, Integer npts, Integer npde, const double x[],
const double u[], const double r[], double fmon[], Nag_Comm *comm),

double rsave[], Integer Irsave, Integer isave[], Integer lisave, Integer itask,
Integer itrace, const char *outfile, Integer *ind, Nag_Comm *comm,
Nag_D03_Save *saved, NagError x*fail)

3 Description

nag pde parab _1d fd ode remesh (d03ppc) integrates the system of parabolic-elliptic equations and
coupled ODEs

npde oU., 9
Z Pj—1+0;=x"—(x"R), i=12,...,npde,a<x<b,i>t, (1)
‘= ot ox

Fi(t,V,V,6, U Us,R*,U;,Uy) =0, i=1,2,... ,ncode, (2)

where (1) defines the PDE part and (2) generalizes the coupled ODE part of the problem.

[NP3660/8] d03ppe.1

d03ppc NAG C Library Manual

In (1), P;; and R; depend on x, ¢, U, U,, and V; Q; depends on x, ¢, U, Uy, V and linearly on V. The
vector U is the set of PDE solution values

Uet) = [U1.0), . Uppaelon) B

and the vector U, is the partial derivative with respect to x. The vector V' is the set of ODE solution values

V) = [V Vo)

and ¥ denotes its derivative with respect to time.

In (2), £ represents a vector of n, spatial coupling points at which the ODEs are coupled to the PDEs.
These points may or may not be equal to some of the PDE spatial mesh points. U*, Uy, R*, Uy and Uy,
are the functions U, U,, R, U, and U,, evaluated at these coupling points. Each F; may only depend
linearly on time derivatives. Hence the equation (2) may be written more precisely as

F:G—AV—B(U,i>, (3)
Usi

T . . .
where F = [F ey F nmde} , G is a vector of length ncode, 4 is an ncode by ncode matrix, B is an

ncode by (n; x npde) matrix and the entries in G, 4 and B may depend on f, U*, Uy and V. In
practice you only need to supply a vector of information to define the ODEs and not the matrices 4 and B.
(See Section 5 for the specification of the user-supplied function odedef.)

The integration in time is from ¢, to 7, over the space interval a < x < b, where a = x; and b = x,,,; are

npts
the leftmost and rightmost points of a mesh x;,x,, ..., Xy defined initially by you and (possibly) adapted
automatically during the integration according to user-specified criteria. The co-ordinate system in space is
defined by the following values of m; m = 0 for Cartesian co-ordinates, m = 1 for cylindrical polar co-
ordinates and m = 2 for spherical polar co-ordinates.

The PDE system which is defined by the functions P;
function pdedef.

j» O; and R; must be specified in the user-supplied

The initial (¢ = ¢,) values of the functions U(x, ¢) and V' (¢) must be specified in a function uvinit supplied
by you. Note that uvinit will be called again following any initial remeshing, and so U(x, ;) should be
specified for all values of x in the interval a < x < b, and not just the initial mesh points.

The functions R; which may be thought of as fluxes, are also used in the definition of the boundary
conditions. The boundary conditions must have the form

ﬁi('xa I)Ri('xata Ua va V) :’Yi(xa t7 Ua Ux; V7 V)z i= 1727---anpdea (4)
where x = a or x = b.

The boundary conditions must be specified in a function bndary provided by you. The function -; may
depend linearly on V.

The problem is subject to the following restrictions:

1 In (1), Vj(t), for j=1,2,...,ncode, may only appear linearly in the functions Q,, for
i=1,2,...,npde, with a similar restriction for ~;

(i) P;; and the flux R; must not depend on any time derivatives;
(iii) g < oy SO that integration is in the forward direction;

(iv) The evaluation of the terms P;;, O; and R; is done approximately at the mid-points of the mesh
x[i — 1], fori = 1,2,...,npts, by calling the user-supplied function pdedef for each mid-point in turn.
Any discontinuities in these functions must therefore be at one or more of the fixed mesh points
specified by xfix;

(v) At least one of the functions P;; must be non-zero so that there is a time derivative present in the PDE
problem;

d03ppc.2 [NP3660/8]

d03 — Partial Differential Equations d03ppc

(vi) If m > 0 and x; = 0.0, which is the left boundary point, then it must be ensured that the PDE solution
is bounded at this point. This can be done by either specifying the solution at x = 0.0 or by
specifying a zero flux there, that is 5; = 1.0 and v, = 0.0. See also Section 8 below.

The algebraic-differential equation system which is defined by the functions F; must be specified in the
user-supplied function odedef. You must also specify the coupling points & in the array xi.

The parabolic equations are approximated by a system of ODEs in time for the values of U; at mesh
points. For simple problems in Cartesian co-ordinates, this system is obtained by replacing the space
derivatives by the usual central, three-point finite-difference formula. However, for polar and spherical
problems, or problems with nonlinear coefficients, the space derivatives are replaced by a modified three-
point formula which maintains second order accuracy. In total there are npde x npts + ncode ODEs in
time direction. This system is then integrated forwards in time using a Backward Differentiation Formula
(BDF) or a Theta method.

The adaptive space remeshing can be used to generate meshes that automatically follow the changing time-
dependent nature of the solution, generally resulting in a more efficient and accurate solution using fewer
mesh points than may be necessary with a fixed uniform or non-uniform mesh. Problems with travelling
wavefronts or variable-width boundary layers for example will benefit from using a moving adaptive mesh.
The discrete time-step method used here (developed by Furzeland (1984)) automatically creates a new
mesh based on the current solution profile at certain time-steps, and the solution is then interpolated onto
the new mesh and the integration continues.

The method requires you to supply a function monitf which specifies in an analytical or numerical form
the particular aspect of the solution behaviour you wish to track. This so-called monitor function is used
to choose a mesh which equally distributes the integral of the monitor function over the domain. A typical
choice of monitor function is the second space derivative of the solution value at each point (or some
combination of the second space derivatives if there is more than one solution component), which results
in refinement in regions where the solution gradient is changing most rapidly.

You must specify the frequency of mesh updates together with certain other criteria such as adjacent mesh
ratios. Remeshing can be expensive and you are encouraged to experiment with the different options in
order to achieve an efficient solution which adequately tracks the desired features of the solution.

Note that unless the monitor function for the initial solution values is zero at all user-specified initial mesh
points, a new initial mesh is calculated and adopted according to the user-specified remeshing criteria. The
function uvinit will then be called again to determine the initial solution values at the new mesh points
(there is no interpolation at this stage) and the integration proceeds.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific Software
Systems (ed J C Mason and M G Cox) 59—72 Chapman and Hall

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems using
the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375-397

Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff
differential equations Appl. Numer. Math. 9 1-19

Furzeland R M (1984) The construction of adaptive space meshes TNER.85.022 Thornton Research
Centre, Chester

Skeel R D and Berzins M (1990) A method for the spatial discretization of parabolic equations in one
space variable SIAM J. Sci. Statist. Comput. 11 (1) 1-32

5 Arguments

1: npde — Integer Input
On entry: the number of PDEs to be solved.
Constraint: npde > 1.

[NP3660/8] d03ppc.3

d03ppc NAG C Library Manual

2:

m — Integer Input
On entry: the co-ordinate system used:
m =0
Indicates Cartesian co-ordinates.
m=1
Indicates cylindrical polar co-ordinates.
m=2
Indicates spherical polar co-ordinates.

Constraint: 0 < m < 2.

ts — double * Input/Output
On entry: the initial value of the independent variable .
On exit: the value of ¢ corresponding to the solution values in u. Normally ts = tout.

Constraint: ts < tout.

tout — double Input

On entry: the final value of ¢ to which the integration is to be carried out.

pdedef — function, supplied by the user External Function

pdedef must evaluate the functions P;;, O, and R; which define the system of PDEs. The functions

may depend on x, ¢, U, U, and V. Q, may depend linearly on 7. pdedef is called approximately
midway between each pair of mesh points in turn by nag pde parab 1d fd ode remesh (dO3ppc).

Its specification is:

void pdedef (Integer npde, double t, double x, const double ul],
const double ux[], Integer ncode, const double v[], const double vdot[],
double p[], double q[], double r[], Integer *ires, Nag_Comm *comm)

l: npde — Integer Input
On entry: the number of PDEs in the system.

2: t — double Input

On entry: the current value of the independent variable .

3: x — double Input

On entry: the current value of the space variable x.

4: u[npde| — const double Input
On entry: u[i — 1] contains the value of the component U,(x,¢), for i = 1,2,...,npde.
5: ux[npde] — const double Input
oU,(x, 1)

On entry: ux[i — 1] contains the value of the component 16 , fori=1,2,... npde.
X

6: ncode — Integer Input

On entry: the number of coupled ODEs in the system.

d03ppc.4 [NP3660/8]

d03 — Partial Differential Equations d03ppc

11:

12:

13:

v[ncode] — const double Input

On entry: v[i — 1] contains the value of component V,(¢), for i = 1,2,..., ncode.

vdot[ncode] — const double Input
On entry: vdot[i — 1] contains the value of component 7,(), for i = 1,2, ..., ncode.

Note: V/,(1), for i = 1,2, ... ncode, may only appear linearly in Q,, forj = 1,2,...,npde.

p[npde x npde] — double Output
On exit: p[npde x j + i] must be set to the value of P;;(x,t,U,U,, V), for
i,j=1,2,... npde.

q[npde] — double Output
On exit: q[i — 1] must be set to the value of Q;(x,t,U,U,,V, f/), for i=1,2,...,npde.

r[npde] — double Output
On exit: r[i — 1] must be set to the value of R;(x,¢,U,U,, V), fori=1,2,...,npde.

ires — Integer * Input/Output
On entry: set to —1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires =2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code = NE_USER_STOP.

ires =3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires = 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires = 3, then nag_pde parab 1d fd ode remesh (d03ppc) returns to the calling
function with the error indicator set to fail.code = NE_FAILED_DERIV.

comm — Nag Comm * Communication Structure
Pointer to structure of type Nag_Comm,; the following members are relevant to pdedef.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag pde parab 1d fd ode remesh
(d03ppc) these pointers may be allocated memory by the user and initialized with
various quantities for use by pdedef when called from

nag pde parab_1d fd ode remesh (d03ppc).

6: bndary — function, supplied by the user External Function

bndary must evaluate the functions ; and ~; which describe the boundary conditions, as given in

(4).

Its specification is:

[NP3660/8]

d03ppc.5

d03ppc

NAG C Library Manual

d03ppc.6

void bndary (Integer mpde, double t, const double u[], const double ux[],

10:

Integer ncode, const double v[], const double vdot[], Integer ibnd,

double beta[], double gammal[], Integer *ires, Nag_Comm *comm)

npde — Integer Input
On entry: the number of PDEs in the system.

t — double Input

On entry: the current value of the independent variable .

u[npde] — const double Input

On entry: ui — 1] contains the value of the component U,(x, ¢) at the boundary specified
by ibnd, for i =1,2,...,npde.

ux[npde] — const double Input

. . an(xa t)
On entry: ux[i — 1] contains the value of the component o at the boundary

X

specified by ibnd, for i = 1,2,... npde.
ncode — Integer Input
On entry: the number of coupled ODEs in the system.
v[ncode] — const double Input
On entry: v[i — 1] contains the value of component V;(¢), for i = 1,2,...,ncode.
vdot[ncode| — const double Input
On entry: vdot[i — 1] contains the value of component V;(¢), for i = 1,2,...,ncode.

Note: f/i(t), fori=1,2,...,ncode, may only appear linearly in ~;, forj =1,2,... npde.

ibnd — Integer Input
On entry: specifies which boundary conditions are to be evaluated.
ibnd =0
bndary must set up the coefficients of the left-hand boundary, x = a.
ibnd # 0
bndary must set up the coefficients of the right-hand boundary, x = b.

beta[npde] — double Output
On exit: beta[i — 1] must be set to the value of (;(x,) at the boundary specified by ibnd,
fori=1,2,...,npde.

gamma[npde| — double Output
On exit: gammali — 1] must be set to the value of ~; (x, t,Uu,u,Vv, f/) at the boundary
specified by ibnd, for i =1,2,..., npde.

ires — Integer * Input/Output
On entry: set to —1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

[NP3660/8]

d03 — Partial Differential Equations d03ppc

ires =2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code = NE_USER_STOP.

ires =3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires = 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires = 3, then nag_pde parab 1d fd ode remesh (d03ppc) returns to the calling
function with the error indicator set to fail.code = NE_FAILED_DERIV.

12: comm — Nag Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to bndary.

user — double *

iuser — Integer *

p — Pointer
The type Pointer will be void *. Before calling nag pde parab 1d fd ode remesh
(d03ppc) these pointers may be allocated memory by the user and initialized with
various quantities for use by bndary when called from
nag pde parab _1d fd ode remesh (d03ppc).

7: uvinit — function, supplied by the user External Function

uvinit must supply the initial (¢ = ¢,) values of U(x,¢) and V(¢) for all values of x in the interval
a<x<bh.

Its specification is:

[NP3660/8]

void uvinit (Integer npde, Integer npts, Integer nxi, const double x[],

const double xi[], double u[l, Integer ncode, double v[], Nag_Comm *comm)

npde — Integer Input
On entry: the number of PDEs in the system.

npts — Integer Input

On entry: the number of mesh points in the interval [a, b].

nxi — Integer Input

On entry: the number of ODE/PDE coupling points.

x[npts] — const double Input
On entry: the current mesh. x[i — 1] contains the value of x;, for i =1,2,... npts.
xi[nxi] — const double Input

On entry: xi[i — 1] contains the value of the ODE/PDE coupling point, §;, for
i=1,2,...,nxi

u[npde x npts] — double Output

On exit: ulnpde x j + i] contains the value of the component U;(x;, 1), for
i=1,2,...,npde; j=1,2,... npts.

ncode — Integer Input

On entry: the number of coupled ODEs in the system.

d03ppc.7

d03ppc NAG C Library Manual

10:

11:

12:

8: v[ncode] — double Output
On exit: v[i — 1] contains the value of component V,(¢,), for i = 1,2,..., ncode.
9: comm — Nag Comm * Communication Structure

Pointer to structure of type Nag Comm; the following members are relevant to uvinit.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag_pde parab 1d fd ode remesh
(d03ppc) these pointers may be allocated memory by the user and initialized with
various quantities for use by uvinit when called from

nag pde parab 1d fd ode remesh (d03ppc).

u[neqn| — double Input/Output
On entry: if ind = 1, the value of u must be unchanged from the previous call.

On exit: ulnpde x (j — 1) +i — 1] contains the computed solution U, (x;,), for i = 1,2,..., npde;
j=1,2,... npts, and u[npts x npde + k — 1] contains V,(¢), for k = 1,2, ..., ncode, evaluated at
t=1ts.

npts — Integer Input
On entry: the number of mesh points in the interval [a, b].

Constraint: npts > 3.

x[npts] — double Input/Output

On entry: the initial mesh points in the space direction. x[0] must specify the left-hand boundary, a
and x[npts — 1] must specify the right-hand boundary, b.

Constraint: x[0] < x[1] < --- < x[npts — 1].

On exit: the final values of the mesh points.

ncode — Integer Input
On entry: the number of coupled ODE in the system.

Constraint: ncode > 0.

odedef — function, supplied by the user External Function

odedef must evaluate the functions F, which define the system of ODEs, as given in (3). If you
wish to compute the solution of a system of PDEs only (ncode = 0), odedef must be the dummy
function dO03pck. (dO3pck is included in the NAG C Library; however, its name may be
implementation-dependent: see the Users’ Note for your implementation for details.)

Its specification is:

void odedef (Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[], const double ucp[],
const double ucpx[], const double rep[], const double ucpt[],
const double ucptx[], double f[], Integer *ires, Nag_Comm *comm)

1: npde — Integer Input

On entry: the number of PDEs in the system.

d03ppc.8 [NP3660/8]

d03 — Partial Differential Equations d03ppc

10:

11:

12:

13:

[NP3660/8]

t — double Input

On entry: the current value of the independent variable .

ncode — Integer Input

On entry: the number of coupled ODEs in the system.

v[ncode] — const double Input
On entry: v[i — 1] contains the value of component V,(¢), for i = 1,2,...,ncode.
vdot[ncode| — const double Input
On entry: vdot[i — 1] contains the value of component V;(¢), for i = 1,2,...,ncode.
nxi — Integer Input

On entry: the number of ODE/PDE coupling points.

xi[nxi] — const double Input

On entry: xi[i — 1] contains the ODE/PDE coupling points, &, for i =1,2,...,nxi

ucp[npde x nxi] — const double Input

On entry: ucp[npde x j + i] contains the value of U;(x,) at the coupling point x = ¢, for
i=1,2,...,npde; j=1,2,... nxi.

ucpx[npde X nxi] — const double Input
L . aU,’ (x, t) . .
On entry: ucpx[npde x j + i] contains the value of “or at the coupling point x = &,
» .
fori=1,2,...,npde; j =1,2,... nxi
rcp[npde x nxi] — const double Input

On entry: rep[npde x j + i] contains the value of the flux R; at the coupling point x = ¢;,
fori=1,2,...,npde; j=1,2,... nxi

ucpt[npde x nxi] — const double Input

. oU; . .
On entry: ucpt[npde x j + i] contains the value of 71’ at the coupling point x = &;, for

i=1,2,...,npde; j=1,2,... nxi.

ucptx[npde x nxi] — const double Input
2

i

On entry: ucptx[npde x j + i] contains the value of at the coupling point x = §;, for

OxOt

i=1,2,....,npde; j=1,2,... nxi.
fincode] — double Output
On exit: f[i — 1] must contain the ith component of F, for i = 1,2, ..., ncode, where F is
defined as

e gl U

F=G—AV B(U;t), (5)
or
_ v _nl Ui
F=—AV B(U;) (6)

The definition of F' is determined by the input value of ires.

d03ppc.9

d03ppc

14:

15:

NAG C Library Manual

ires — Integer * Input/Output

On entry: the form of F' that must be returned in the array f. If ires = 1, then the equation
(5) above must be used. If ires = —1, then the equation (6) above must be used.

On exit: should usually remain unchanged. However, you may reset ires to force the
integration function to take certain actions as described below:

ires =2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code = NE_USER_STOP.

ires =3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires = 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires = 3, then nag_pde parab 1d fd ode remesh (d03ppc) returns to the calling
function with the error indicator set to fail.code = NE_FAILED_DERIV.

comm — Nag Comm * Communication Structure
Pointer to structure of type Nag Comm,; the following members are relevant to odedef.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag pde parab 1d fd ode remesh
(d03ppc) these pointers may be allocated memory by the user and initialized with
various quantities for use by odedef when called from

nag pde parab_1d fd ode remesh (d03ppc).

13: nxi — Integer Input

On entry: the number of ODE/PDE coupling points.

Constraints:

if ncode = 0, nxi = 0;
if ncode > 0, nxi > 0.

14: xi[dim] — const double Input

Note: the dimension, dim, of the array xi must be at least max (1, nxi).

On entry: xi[i — 1], for i = 1,2, ..., nxi, must be set to the ODE/PDE coupling points.

Constraint: x[0] < xi[0] < xi[l] < --- < xi[nxi — 1] < x[npts — 1].

15: neqn — Integer Input

On entry: the number of ODEs in the time direction.

Constraint: neqn = npde x npts + ncode.

16: rtol[dim] — const double Input

Note: the dimension, dim, of the array rtol must be at least

1 when itol = 1 or 2;
neqn when itol = 3 or 4.

On entry: the relative local error tolerance.

Constraint: rtol[i — 1] > 0 for all relevant i.

d03ppc.10

[NP3660/8]

d03 — Partial Differential Equations d03ppc

17:

18:

19:

20:

atol[dim| — const double Input
Note: the dimension, dim, of the array atol must be at least

1 when itol = 1 or 3;
neqn when itol = 2 or 4.

On entry: the absolute local error tolerance.
Constraints:
atol[i] > 0 for all relevant i;
Corresponding elements of atol and rtol cannot both be 0.0.
itol — Integer Input

On entry: a value to indicate the form of the local error test. itol indicates to
nag pde parab 1d fd ode remesh (d03ppc) whether to interpret either or both of rtol or atol as
a vector or scalar. The error test to be satisfied is ||e;/w;|| < 1.0, where w; is defined as follows:

itol rtol atol w;
1 scalar scalar rtol[0] x |U,| + atol[0]
2 scalar vector rtol0] x |U;| + atol[i — 1]
3 wvector scalar rtol[i — 1] x |U,| + atol[0]
4 vector vector rtolli — 1] x |U;| + atol[i — 1]

In the above, ¢; denotes the estimated local error for the ith component of the coupled PDE/ODE
system in time, u[i — 1], for i = 1,2,...,neqn.

The choice of norm used is defined by the argument norm, see below.

Constraint: 1 <itol < 4.

norm — Nag NormType Input
On entry: the type of norm to be used. Two options are available:
norm = Nag_MaxNorm
Maximum norm.
norm = Nag TwoNorm
Averaged L, norm.

If u,,m, denotes the norm of the vector u of length neqn, then for the averaged L, norm

while for the maximum norm

Uporm = m?x |u[l - 1]/Wl|

See the description of the itol argument for the formulation of the weight vector w.

Constraint: norm = Nag_MaxNorm or Nag_TwoNorm.

laopt — Nag_ LinAlgOption Input
On entry: the type of matrix algebra required.
laopt = Nag LinAlgFull
Full matrix methods to be used.
laopt = Nag LinAlgBand

Banded matrix methods to be used.

[NP3660/8] d03ppe.11

d03ppc NAG C Library Manual

21:

laopt = Nag_LinAlgSparse
Sparse matrix methods to be used.
Constraint: laopt = Nag_LinAlgFull, Nag LinAlgBand or Nag_ LinAlgSparse.
Note: you are recommended to use the banded option when no coupled ODEs are present (i.e.,
ncode = 0).
algopt[30] — const double Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then algopt[0] should be set to 0.0. Default values will also be used for any
other elements of algopt set to zero. The permissible values, default values, and meanings are as
follows:

algopt[0]
Selects the ODE integration method to be used. If algopt[0] = 1.0, a BDF method is used
and if algopt[0] = 2.0, a Theta method is used. The default value is algopt[0] = 1.0.

If algopt[0] = 2.0, then algopt]i], for i = 1,2,3 are not used.

algopt|[1]
Specifies the maximum order of the BDF integration formula to be used. algopt[1] may be
1.0, 2.0, 3.0, 4.0 or 5.0. The default value is algopt[1] = 5.0.

algopt[2]

Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If algopt[2] = 1.0 a modified Newton iteration is used and if
algopt[2] = 2.0 a functional iteration method is used. If functional iteration is selected and
the integrator encounters difficulty, then there is an automatic switch to the modified Newton
iteration. The default value is algopt[2] = 1.0.

algopt[3]
Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
P;;=0.0, for j=1,2,...,npde for some i or when there is no V;(¢) dependence in the

coupled ODE system. If algopt[3] = 1.0, then the Petzold test is used. If algopt[3] = 2.0,
then the Petzold test is not used. The default value is algopt[3] = 1.0.

If algopt[0] = 1.0, then algopt([i], for i =4,5,6 are not used.
algopt[4]

Specifies the value of Theta to be used in the Theta integration method.
0.51 < algopt[4] < 0.99. The default value is algopt[4] = 0.55.

algopt[5]

Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If algopt[5] = 1.0, a modified Newton iteration is used and if
algopt[5] = 2.0, a functional iteration method is used. The default value is algopt[5] = 1.0.

algopt|[6]

Specifies whether or not the integrator is allowed to switch automatically between modified
Newton and functional iteration methods in order to be more efficient. If algopt[6] = 1.0,
then switching is allowed and if algopt[6] = 2.0, then switching is not allowed. The default
value is algopt[6] = 1.0.

algopt[10]

Specifies a point in the time direction, 7, beyond which integration must not be attempted.
The use of 7. is described under the argument itask. If algopt[0] # 0.0, a value of 0.0 for
algopt[10], say, should be specified even if itask subsequently specifies that 7.; will not be
used.

d03ppe.12 [NP3660/8]

d03 — Partial Differential Equations d03ppc

22:

23:

algopt[11]

Specifies the minimum absolute step size to be allowed in the time integration. If this option
is not required, algopt[11] should be set to 0.0.

algopt[12]

Specifies the maximum absolute step size to be allowed in the time integration. If this option
is not required, algopt[12] should be set to 0.0.

algopt[13]

Specifies the initial step size to be attempted by the integrator. If algopt[13] = 0.0, then the
initial step size is calculated internally.

algopt[14]

Specifies the maximum number of steps to be attempted by the integrator in any one call. If
algopt[14] = 0.0, then no limit is imposed.

algopt[22]

Specifies what method is to be used to solve the nonlinear equations at the initial point to
initialize the values of U, U,, ¥ and V. If algopt[22] = 1.0, a modified Newton iteration is
used and if algopt[22] =2.0, functional iteration is used. The default value is
algopt[22] = 1.0.

algopt[28] and algopt[29] are wused only for the sparse matrix algebra option,
laopt = Nag_LinAlgSparse.

algopt[28]

Governs the choice of pivots during the decomposition of the first Jacobian matrix. It should
lie in the range 0.0 < algopt[28] < 1.0, with smaller values biasing the algorithm towards
maintaining sparsity at the expense of numerical stability. If algopt[28] lies outside this range
then the default value is used. If the functions regard the Jacobian matrix as numerically
singular then increasing algopt[28] towards 1.0 may help, but at the cost of increased fill-in.
The default value is algopt[28] = 0.1.

algopt[29]
Is used as a relative pivot threshold during subsequent Jacobian decompositions (see
algopt[28]) below which an internal error is invoked. If algopt[29] is greater than 1.0 no
check is made on the pivot size, and this may be a necessary option if the Jacobian is found
to be numerically singular (see algopt[28]). The default value is algopt[29] = 0.0001.
remesh — Nag Boolean Input
On entry: indicates whether or not spatial remeshing should be performed.
remesh = Nag True
Indicates that spatial remeshing should be performed as specified.
remesh = Nag_ False
Indicates that spatial remeshing should be suppressed.
Note: remesh should not be changed between consecutive calls to
nag pde parab 1d fd ode remesh (d03ppc). Remeshing can be switched off or on at specified
times by using appropriate values for the arguments nrmesh and trmesh at each call.
nxfix — Integer Input
On entry: the number of fixed mesh points.
Constraint: 0 < nxfix < npts — 2

Note: the end points x[0] and x[npts — 1] are fixed automatically and hence should not be specified
as fixed points.

[NP3660/8] d03ppc.13

d03ppc NAG C Library Manual

24:

25:

26:

27:

28:

xfix[dim| — const double Input
Note: the dimension, dim, of the array xfix must be at least max(1, nxfix).

On entry: xfix[i — 1], for i = 1,2, ..., nxfix, must contain the value of the x co-ordinate at the ith
fixed mesh point.

Constraint: xfix[i — 1] < xfix[i], for i=1,2,...,nxfix — 1, and each fixed mesh point must
coincide with a user-supplied initial mesh point, that is xfix[i — 1] =x[j— 1] for some J,
2 <j<npts — 1.

Note: the positions of the fixed mesh points in the array x remain fixed during remeshing, and so
the number of mesh points between adjacent fixed points (or between fixed points and end points)
does not change. You should take this into account when choosing the initial mesh distribution.

nrmesh — Integer Input

On entry: specifies the spatial remeshing frequency and criteria for the calculation and adoption of a
new mesh.

nrmesh < 0

Indicates that a new mesh is adopted according to the argument dxmesh below. The mesh is
tested every |nrmesh| timesteps.

nrmesh = 0

Indicates that remeshing should take place just once at the end of the first time step reached
when ¢ > trmesh (see below).

nrmesh > 0

Indicates that remeshing will take place every mrmesh time steps, with no testing using
dxmesh.

Note: nrmesh may be changed between consecutive calls to nag pde parab 1d fd ode remesh
(d03ppc) to give greater flexibility over the times of remeshing.
dxmesh — double Input

On entry: determines whether a new mesh is adopted when nrmesh is set less than zero. A possible
new mesh is calculated at the end of every |nrmesh| time steps, but is adopted only if

xl(new) > x,(()ld) -+ dxmesh x (xgilf) - x<°ld))

1

or

xl(new) < x;old)

1

— dxmesh x (x(°ld> — x,(fl]d)>

dxmesh thus imposes a lower limit on the difference between one mesh and the next.

Constraint. dxmesh > 0.0.

trmesh — double Input

On entry: specifies when remeshing will take place when nrmesh is set to zero. Remeshing will
occur just once at the end of the first time step reached when ¢ is greater than trmesh.

Note: trmesh may be changed between consecutive calls to nag pde parab 1d fd ode remesh
(d03ppc) to force remeshing at several specified times.

ipminf — Integer Input
On entry: the level of trace information regarding the adaptive remeshing.

ipminf =0

No trace information.

d03ppc.14 [NP3660/8]

d03 — Partial Differential Equations d03ppc

29:

30:

31:

ipminf = 1
Brief summary of mesh characteristics.
ipminf = 2

More detailed information, including old and new mesh points, mesh sizes and monitor
function values.

Constraint: 0 < ipminf < 2.

xratio — double Input

On entry: an input bound on the adjacent mesh ratio (greater than 1.0 and typically in the range 1.5
to 3.0). The remeshing functions will attempt to ensure that

(x; — x;_1)/xratio < x;,; —x; < xratio X (x; — x;_;)
Suggested value: xratio = 1.5.

Constraint: xratio > 1.0.

con — double Input

On entry: an input bound on the sub-integral of the monitor function F™"(x) over each space step.
The remeshing functions will attempt to ensure that

Xit1 Xpts
/ F™"(x)dx < con / F™"(x)dx,
X,

i X1

(see Furzeland (1984)). con gives you more control over the mesh distribution e.g., decreasing con
allows more clustering. A typical value is 2/(npts — 1), but you are encouraged to experiment with
different values. Its value is not critical and the mesh should be qualitatively correct for all values
in the range given below.

Suggested value: con = 2.0/(NPTS — 1).
Constraint: 0.1/(npts — 1) < con < 10.0/(npts — 1).

monitf — function, supplied by the user External Function

monitf must supply and evaluate a remesh monitor function to indicate the solution behaviour of
interest.

If you specify remesh = Nag_False, i.e., no remeshing, then monitf will not be called and the
dummy function dO3pcl may be used for monitf. (dO3pcl is included in the NAG C Library;
however, its name may be implementation-dependent: see the Users’ Note for your implementation
for details.)

Its specification is:

void monitf (double t, Integer npts, Integer npde, const double x[],
const double ull, const double r[], double fmon[], Nag_Comm *comm)

1: t — double Input

On entry: the current value of the independent variable .

2: npts — Integer Input

On entry: the number of mesh points in the interval [a, b].

3: npde — Integer Input

On entry: the number of PDEs in the system.

[NP3660/8] d03ppc.15

d03ppc NAG C Library Manual

32:

33:

4: x[npts| — const double Input
On entry: the current mesh. x[i — 1] contains the value of x;, for i = 1,2,..., npts.
5: u[npde X npts] — const double Input

On entry: u[npde X j + i] contains the value of U;(x,¢) at x = x[j — 1] and time ¢, for
i=1,2,...,npde; j =1,2,... npts.
6: r[npde x npts] — const double Input

On entry: r[npde X j + i] contains the value of R;(x,¢,U,U,, V) at x = x[j — 1] and time ¢,
fori=1,2,...,npde; j =1,2,... npts.

7: fmon[npts| — double Output
On exit: fmon[i — 1] must contain the value of the monitor function F™"(x) at mesh point
x=x[i —1].

8: comm — Nag Comm * Communication Structure

Pointer to structure of type Nag Comm,; the following members are relevant to monitf.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag pde parab 1d fd ode remesh
(d03ppc) these pointers may be allocated memory by the user and initialized with
various quantities for use by monitf when called from

nag pde parab_1d fd ode remesh (d03ppc).

rsave[lrsave] — double Communication Array
If ind = 0, rsave need not be set on entry.

If ind = 1, rsave must be unchanged from the previous call to the function because it contains
required information about the iteration.

Irsave — Integer Input

On entry: the dimension of the array rsave as declared in the function from which
nag pde parab 1d fd ode remesh (dO3ppc) is called. Its size depends on the type of matrix
algebra selected:

if laopt = Nag_LinAlgFull, Irsave > neqn x neqn + neqn + nwkres + lenode;
if laopt = Nag_LinAlgBand, Irsave > (3 x mlu + 1) X neqn + nwkres + lenode;
if laopt = Nag_LinAlgSparse, Irsave > 4 X neqn + 11 x neqn/2 + 1 + nwkres + lenode;

where

mlu = the lower or upper half bandwidths, and
mlu = 2 x npde — 1, for PDE problems only, and
mlu = neqn — 1, for coupled PDE/ODE problems.

nwkres = npde x (3 x npde + 6 x nxi + npts + 15) + nxi + ncode + 7 x npts +

nxfix + 1, when ncode > 0 and nxi > 0,

nwkres = npde x (3 x npde + npts + 21) + ncode + 7 x npts + nxfix + 2, when
ncode > 0 and nxi = 0.

nwkres = npde X (3 x npde + npts + 21) + 7 x npts + nxfix + 3, when ncode = 0.

lenode = (6 + int(algopt[1])) x neqn + 50, when the BDF method is used, and
lenode = 9 x neqn + 50, when the Theta method is used.

d03ppc.16 [NP3660/8]

d03 — Partial Differential Equations d03ppc

34

35:

36:

Note: when using the sparse option, the value of lrsave may be too small when supplied to the
integrator. An estimate of the minimum size of Irsave is printed on the current error message unit if
itrace > 0 and the function returns with fail.code = NE_INT_2.

isave[lisave] — Integer Communication Array

If ind = 0, isave need not be set on entry.

If ind = 1, isave must be unchanged from the previous call to the function because it contains
required information about the iteration required for subsequent calls. In particular:

isave[0]
Contains the number of steps taken in time.
isave[l]

Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

isave[2]

Contains the number of Jacobian evaluations performed by the time integrator.
isave[3]

Contains the order of the ODE method last used in the time integration.
isave[4]

Contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution
using the LU decomposition of the Jacobian matrix.

The rest of the array is used as workspace.

lisave — Integer Input

On entry: the dimension of the array isave as declared in the function from which
nag pde parab _1d fd ode remesh (d03ppc) is called.

Its size depends on the type of matrix algebra selected:

if laopt = Nag_LinAlgBand, lisave > neqn + 25 + nxfix;
if laopt = Nag_LinAlgFull, lisave > 25 + nxfix;
if laopt = Nag_LinAlgSparse, lisave > 25 x neqn + 25 + nxfix.

Note: when using the sparse option, the value of lisave may be too small when supplied to the
integrator. An estimate of the minimum size of lisave is printed if itrace > 0 and the function
returns with fail.code = NE_INT 2.
itask — Integer Input
On entry: specifies the task to be performed by the ODE integrator.
itask = 1

Normal computation of output values u at ¢ = tout.
itask = 2

One step and return.
itask =3

Stop at first internal integration point at or beyond ¢ = tout.
itask =4

Normal computation of output values u at ¢ = tout but without overshooting ¢ = ¢.; where
tuie 18 described under the argument algopt.

[NP3660/8] d03ppc.17

d03ppc NAG C Library Manual

37:

38:

39:

40:

41:

itask = 5

Take one step in the time direction and return, without passing ¢, where 7 is described
under the argument algopt.

Constraint: 1 < itask < 5.

itrace — Integer Input

On entry: the level of trace information required from nag_pde parab 1d fd ode remesh (d03ppc)
and the underlying ODE solver as follows:

itrace < —1

No output is generated.
itrace = 0

Only warning messages from the PDE solver are printed.
itrace = 1

Output from the underlying ODE solver is printed. This output contains details of Jacobian
entries, the nonlinear iteration and the time integration during the computation of the ODE
system.

itrace = 2

Output from the underlying ODE solver is similar to that produced when itrace = 1, except
that the advisory messages are given in greater detail.

itrace > 3
Output from the underlying ODE solver is similar to that produced when itrace = 2, except
that the advisory messages are given in greater detail.
outfile — const char * Input
On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.
ind — Integer * Input/Output
On entry: must be set to 0 or 1.
ind=0
Starts or restarts the integration in time.
ind =1

Continues the integration after an earlier exit from the function. In this case, only the
arguments tout and fail and the remeshing arguments nrmesh, dxmesh, trmesh, xratio and
con may be reset between calls to nag_pde parab 1d fd ode remesh (d03ppc).

Constraint: 0 <ind < 1.

On exit: ind = 1.

comm — Nag Comm * Communication Structure

The NAG communication argument (see Section 2.2.1.1 of the Essential Introduction).

saved — Nag D03 Save * Communication Structure
Note: saved is a NAG defined type (see Section 2.2.1.1 of the Essential Introduction).

saved must remain unchanged following a previous call to a d03 function and prior to any
subsequent call to a dO3 function.

d03ppc.18 [NP3660/8]

d03 — Partial Differential Equations d03ppc

42: fail — NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ACC_IN_DOUBT

Integration completed, but small changes in atol or rtol are unlikely to result in a changed solution.

NE_BAD PARAM

On entry, argument (value) had an illegal value.

NE_FAILED DERIV
In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This
could be due to your setting ires = 3 in pdedef or bndary.
NE_FAILED_START
atol and rtol were too small to start integration.
Underlying ODE solver cannot make further progress from the point ts with the supplied values of
atol and rtol. ts = (value).
NE_FAILED STEP
Error during Jacobian formulation for ODE system. Increase itrace for further details.
Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as
ts: ts = (value).
NE_INCOMPAT PARAM
On entry, con < 0.1/(npts — 1): con = (value), npts = (value).
On entry, con > 10.0/(npts — 1): con = (value), npts = (value).
On entry, m > 0 and x[0] < 0.0: m = (value), x[0] = (value).
On entry, the point xfix[i—1] does not coincide with any x[j—1]: i= (value),
xfix[i — 1] = (value).
NE_INT
On entry, ind is not equal to 0 or 1: ind = (value).
On entry, ipminf is not equal to 0, 1, or 2: ipminf = (value).
ires set to an invalid value in call to pdedef, bndary, or odedef.
On entry, itask is not equal to 1, 2, 3, 4 or 5: itask = (value).
On entry, itol is not equal to 1, 2, 3, or 4: itol = (value).
On entry, m is not equal to 0, 1, or 2: m = (value).

On entry, ncode = (value).
Constraint: ncode > 0.

On entry, npde = (value).
Constraint: npde > 1.

On entry, npts = (value).
Constraint: npts > 3.

On entry, nxfix = (value).
Constraint: nxfix > 0.

[NP3660/8] d03ppc.19

d03ppc NAG C Library Manual

On entry, nxi = (value).
Constraint: nxi > 0.
NE_INT 2
On entry, corresponding elements atol[i — 1] and rtol[j — 1] are both zero. i = (value), j = (value).
On entry, lisave is too small: lisave = (value). Minimum possible dimension: (value).
On entry, Irsave is too small: Irsave = (value). Minimum possible dimension: (value).
On entry, nxfix > npts — 2: nxfix = (value), npts = (value).

When using the sparse option lisave or Irsave is too small: lisave = (value), Irsave = (value).

NE_INT 4
On entry, neqn is not equal to npde x npts + ncode: neqn = (value), npde = (value),
npts = (value), ncode = (value).

NE_INTERNAL_ERROR

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_ITER_FAIL
In solving ODE system, the maximum number of steps algopt[14] has been exceeded.
algopt[14] = (value).

NE_NOT_CLOSE_FILE

Cannot close file (value).

NE_NOT_STRICTLY_INCREASING

On entry, mesh points x appear to be badly ordered: i = (value), x[i — 1] = (value), j = (value),
x[j — 1] = (value).

On entry, xfix[i] < xfix[i — 1]: i = (value), xfix[i] = (value), xfix[i — 1] = (value).

1
On entry, xi[i] < xi[i — 1]: i = (value), xili] = (value), xi[i — 1] = (value).

NE_NOT_WRITE_FILE

Cannot open file (value) for writing.

NE_REAL

On entry, dxmesh = (value).
Constraint: dxmesh > 0.0.

On entry, xratio = (value).
Constraint: xratio > 1.0.
NE_REAL 2

On entry, at least one point in xi lies outside [x[0],x[npts — 1]]: x[0] = (value),
x[npts — 1] = (value).

On entry, tout — ts is too small: tout = (value), ts = (value).

On entry, tout < ts: tout = (value), ts = (value).

NE_REAL_ARRAY
On entry, atol[i — 1] < 0.0: i = (value), atol[i — 1] = (value).
On entry, rtol[i — 1] < 0.0: i = (value), rtol[i — 1] = (value).

d03ppe.20 [NP3660/8]

d03 — Partial Differential Equations d03ppc

NE_REMESH_CHANGED
remesh has been changed between calls to nag pde parab 1d fd ode remesh (d03ppc).

NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_TIME_DERIV_DEP

Flux function appears to depend on time derivatives.

NE_USER_STOP

In evaluating residual of ODE system, ires =2 has been set in pdedef, bndary, or odedef.
Integration is successful as far as ts: ts = (value).

NE_ZERO_WTS

Zero error weights encountered during time integration.

7 Accuracy

nag pde parab_1d fd ode remesh (d03ppc) controls the accuracy of the integration in the time direction
but not the accuracy of the approximation in space. The spatial accuracy depends on both the number of
mesh points and on their distribution in space. In the time integration only the local error over a single
step is controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore
test the effect of varying the accuracy arguments, atol and rtol.

8 Further Comments

The argument specification allows you to include equations with only first-order derivatives in the space
direction but there is no guarantee that the method of integration will be satisfactory for such systems. The
position and nature of the boundary conditions in particular are critical in defining a stable problem. It
may be advisable in such cases to reduce the whole system to first-order and to use the Keller box scheme
function nag_pde parab_1d keller ode remesh (d03prc).

The time taken depends on the complexity of the parabolic system, the accuracy requested, and the
frequency of the mesh updates. For a given system with fixed accuracy and mesh-update frequency it is
approximately proportional to neqn.

9 Example

This example uses Burgers Equation, a common test problem for remeshing algorithms, given by
oU ou U
Y § SN i
o o e

for x € [0, 1] and ¢ € [0, 1], where E is a small constant.
The initial and boundary conditions are given by the exact solution

~ 0.1exp(—4) + 0.5 exp(—B) + exp(—C)
~ exp(—4) +exp(—B) + exp(—C)

Ul(x,t)

b
where

50
4 ="(x—0.5+4950),

250

500

[NP3660/8] d03ppe.21

d03ppc

9.1 Program Text

/* nag_pde_parab_1d_fd_ode_remesh (dO3ppc) Example Program.

*

* Copyright 2001 Numerical Algorithms Group.

*
* Mark 7,
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>

2001.

static void pdedef (Integer, double, double, const doublel],

Integer, const doublel],

double[], doublel],
const doublel],

static void bndary(Integer, double,

Integer, const doublel],

double[], doublel],
static void uvinit(Integer, Integer, Integer,
double[], Integer,

static void monitf (double, Integer, Integer,
const doublel[],
static void exact(double, double *, Integer,

#define P
#define R
#define U
#define UO

int main(void)
{
const Integer npde=1l, npts=61,
negn=npde*npts+ncode, intpts=5,

nwkres=npde* (npts+3*npde+21)+7*npts+nxfix+3,

lrsave=negn#*neqgn+neqgn+nwkres+lenode;
double con, dxmesh, e, tout,
Integer exit_status, i, ind,
Nag_Boolean remesh, theta;
double *algopt=0, *atol=0,
*uout=0, *x=0, *xfix=0,
Integer xisave=0;
NagError fail;
Nag_Comm comm;
Nag_DO03_Save saved;

ipminf, it,

*rsave=0,
*x1=0, *xout=0;

INIT _FAIL(fail);
exit_status = 0;
/* Allocate memory */
if (algopt = NAG_ALLOC(30, double)) ||
atol = NAG_ALLOC(1l, double)) ||
rsave = NAG_ALLOC(lrsave, double)) |
rtol = NAG_ALLOC(1l, double)) ||
= NAG_ALLOC (negn, double)) ||
= NAG_ALLOC (intpts, double)) ||
uout = NAG_ALLOC (npde*intpts*itype,
= NAG_ALLOC (npts, double)) ||
Xle = NAG_ALLOC(1, double)) ||
= NAG_Z—\LLOC(l, double)) ||
xout = NAG_ALLOC (intpts, double)) ||
is

I
!
I
I
I
!
I
!
I
!
I
! ave = NAG_ALLOC(lisave, Integer))

(
(
(
(
(u
(u
(
(x
(
(x
(
(

{
Vprintf ("Allocation failure\n")
exit_status = 1;
goto END;

3

d03ppc.22

ncode=0, m=0,
lisave=25+nxfix,
lenode=11#*neqn+50,

*rtol=

nxi=0,

trmesh, ts, xratio;
itask,

0, *xu=0,

double))

)

Integer x*,

Integer *,
const doublel],
doublel],
const doublel],
double[], Nag_Comm *);
double *,

NAG C Library Manual

const doublel],
const double[], doublel],
Nag_Comm *) ;

const doublel],

const double[], Integer,
Nag_Comm *) ;

const doublel],

Nag_Comm *) ;
const doublel],

Nag_Comm *) ;

nxfix=0,

itol,

*ue=0,

itype=1,

itrace, nrmesh;

[NP3660/8]

d03 — Partial Differential Equations

Vprintf ("nag_pde_parab_1d_fd_ode_remesh (dO3ppc) Example Program"
" Results\n\n");
e = 0.005

comm.p = (Pointer)’

itrace = 0;

itol = 1;

atol[0] = 5e-5;

rtol[0] = atol[0];

Vprintf (" Accuracy requirement =%10.3e", atol[0]);

Vprintf (" Number of points = %31d\n\n", npts);
/* Initialise mesh *x/

for (i = 0; i < npts; ++i) x[i] = i/(npts-1.0);
/* Set remesh parameters #*/

remesh = Nag_TRUE;
nrmesh = 3;

dxmesh = 0.5;

trmesh = 0.0;

con = 2.0/(npts-1.0);
xratio = 1.5;

ipminf = 0O;

Vprintf (" Remeshing every %31d time steps\n\n", nrmesh) ;
Vprintf (" e =%8.3f\n\n\n", e);

xi[0] = 0.0;
ind = 0;
itask = 1;

/* Set theta to TRUE if the Theta integrator is required =*/

theta = Nag_FALSE;

for (i = 0; i < 30; ++1i) algoptl[i] = 0.0;
if (theta)
{
algopt[0] = 2.0;
} else {
algopt([0] = 0.0;
}

/* Loop over output value of t =*/

ts = 0.0;

tout = 0.0;

for (it = 0; it < 5; ++it)
{

tout = 0.2+ (it+1);

/* nag_pde_parab_1d_fd_ode_remesh (d03ppc).
* General system of parabolic PDEs, coupled DAEs, method of
* lines, finite differences, remeshing, one space variable

*/

nag_pde_parab_1d_fd_ode_remesh(npde, m, &ts, tout, pdedef, bndary,
u, npts, x, ncode, dO3pck, nxi,

rtol, atol, itol, Nag_TwoNorm,

Nag_LinAlgFull, algopt, remesh,

xfix, nrmesh, dxmesh, trmesh,

&saved, &fail);

if (fail.code != NE_NOERROR)
{

d03ppc

uvinit,
neqn,

nxfix,
ipminf,
xratio, con, monitf, rsave, lrsave,
lisave, itask, itrace, 0, &ind,

isave,

&comm,

Vprintf ("Error from nag_pde_parab_1d_fd_ode_remesh (d03ppc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

[NP3660/8]

d03ppc.23

d03ppc

d03ppc.

NAG C Library Manual

}
/* Set output points =*/

switch (it)

{

case O:
for (i =
break;

case 1:
for (i = 0; i < 5; ++1i) xout[i] = 0.4+0.1*1i;
break;

case 2:
for (1 = 0; 1 < 5; ++1) xout[i] = 0.6+0.05%1i;
break;

case 3:
for (i = 0; 1 < 5; ++1i) xout[i] = 0.7+0.05%1i;
break;

case 4:
for (1 = 0; 1 < 5; ++1i) xout[i] = 0.8+0.05%1;
break;

|
o
=
A
v

++1i) xout[i] = 0.3+0.1%1;

}

Vprintf (" t = %6.3f\n", ts);
Vprintf (" x ");

for (i = 0; 1 < 5; ++1i)
{
Vprintf ("%9.4f", xoutl[il);
Vprintf ((i+1)%5 == [1 == 4 2"\n":" ");
¥

/* Interpolate at output points =*/

nag_pde_interp_1d_fd (d03pzc).

PDEs, spatial interpolation with nag_pde_parab_1d_fd
(d03pcc), nag_pde_parab_1ld_keller (dO3pec),
nag_pde_parab_1d_cd (d03pfc), nag_pde_parab_1d_fd_ode
(d03phc), nag_pde_parab_1ld_keller_ode (d03pkc),
nag_pde_parab_1d_cd_ode (d03plc),
nag_pde_parab_1d_fd_ode_remesh (d03ppc),
nag_pde_parab_1ld_keller_ode_remesh (dO3prc) or
nag_pde_parab_1d_cd_ode_remesh (d03psc)

S
*

% X ¥ 3k Ok F X

*/

nag_pde_interp_1d_fd(npde, m, u, npts, x, xout, intpts, itype, uout,

&fail);

if (fail.code != NE_NOERROR)

{
Vprintf ("Exrror from nag_pde_interp_1d_fd (dO03pzc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
¥

/* Check against exact solution *x/
exact(ts, xout, intpts, ue, &comm);
Vprintf (" Approx sol. ");
for (i = 1; i <= intpts; ++i)

{ Vprintf ("%9.4f", UOUT(1,1i,1));

Vprintf(i%5 == 0 || i == 5 ?2"\n":" ");
}

Vprintf (" Exact sol. ");
for (i = 1; i <= intpts; ++i)

{

24

[NP3660/8]

d03 — Partial Differential Equations

Vprintf ("%9.4f", ueli-11);
Vprintf (i%s5 == 0 || 1 == 5 2"\n":" ");
}
Vprintf ("\n") ;
3

Vprintf (" Number of integration steps in time = %61ld\n",
Vprintf (" Number of function evaluations = %61d\n", isavel
Vprintf (" Number of Jacobian evaluations = %61d\n", isavel
Vprintf (" Number of iterations = %6ld\n\n", isavel[4]);
END:

if (algopt) NAG_FREE (algopt);

if (atol) NAG_FREE(atol);

if (rsave) NAG_FREE (rsave) ;

if (rtol) NAG_FREE(rtol);

if (u) NAG_FREE(u);

if (ue) NAG_FREE (ue);

if (uout) NAG_FREE (uout) ;

if (x) NAG_FREE(X);

if (xfix) NAG_FREE (xfix);

if (xi) NAG_FREE(x1);

if (xout) NAG_FREE (xout);

if (isave) NAG_FREE (isave) ;

return exit_status;

}

static void uvinit(Integer npde,

Integer npts,

Integer nxi,

d03ppc

isave[0]);

1]1);
2]1);

const double x[],

const double xil],

double ul], Integer ncode,

double v[], Nag_Comm *comm)

{
double *e = (double *)comm->p;
double a, b, c, t;
Integer 1i;
t = 0.0;
for (i = 1; i <= npts; ++1i)
{
a = (x[i-1] = 0.25 = 0.75%t)/(*e*x4.0);
b = (0.9*x[i-1] - 0.325 - 0.495%t)/(*ex2.0);
if (a > 0.0 && a > b)
{
a = exp(-a);
c = (0.8%*x[i-1] - 0.4 - 0.24*t)/(*xe*x4.0);
c = exp(c);
U(l, i) = (0.1*c + 0.5 + a)/(c + 1.0 + a);
} else if (b > 0.0 && b >= a) {
b = exp(-b);
c = (-0.8*x[i-1] + 0.4 + 0.24*t)/(*xe*4.0);
c = exp(c);
U(l, i) = (0.5%c + 0.1 + b)/(c + 1.0 + b);
} else {
a = exp(a);
b = exp(b);
U(l, i) = (0.5%*a + 1.0 + 0.1%b)/(a + 1.0 + b);
¥
}
return;
¥
static void pdedef (Integer npde, double t, double x, const double ull,

const double uxl[],
const double vdotl[],

double r[],

double *e (double *)comm->p;

1.0;
*exux[0];

= ul[0]*ux[0];

[NP3660/8]

Integer ncode, const double vI[],
double p[], double ql],
Integer *ires, Nag_Comm *comm)

d03ppc.25

d03ppc NAG C Library Manual

}

static void bndary(Integer npde, double t, const double ul]l,

}

const double ux[], Integer ncode, const double vI[],
const double vdot[], Integer ibnd, double betall,
double gammal[], Integer *ires, Nag_Comm *comm)

double a, b, c, ue, x;

double *e = (double *)comm->p;
betal0] = 0.0;
if (ibnd == 0)
{
x = 0.0;
a = (x - 0.25 = 0.75*t)/(*ex4.0);
b = (0.9*x - 0.325 - 0.495%t)/(*xe*2.0);
if (a > 0. && a > b)
{
a = exp(-a);
c = (0.8%¥x - 0.4 - 0.24xt)/(*xex4.0);
c = exp(c);

ue = (0.1*c + 0.5 + a)/(c + 1.0 + a);
} else if (b > 0.0 && b >= a) {

b = exp(-b);

c = (-0.8*x + 0.4 + 0.24%*t)/(*e*x4.0);

c = exp(c);
ue = (0.5*c + 0.1 + b)/(c + 1.0 + b);
} else {
a = exp(a);
b = exp(b);
ue = (0.5*a + 1.0 + 0.1%b)/(a + 1.0 + b);
¥
} else {
x = 1.0;
a = (x - 0.25 = 0.75*t)/(*ex4.0);
b = (0.9*x - 0.325 - 0.495*t)/(*xe*x2.0);
if (a > 0.0 && a > b)
{

a = exp(-a);

c = (0.8*x = 0.4 - 0.24*t)/(*e*4.0);

c = exp(c);

ue = (0.1*c + 0.5 + a)/(c + 1.0 + a);
} else if (b > 0.0 && b >= a) {

b = exp(-b);

c = (-0.8*x + 0.4 + 0.24%t)/(*e*x4.0);

c = exp(c);
ue = (0.5*c + 0.1 + b)/(c + 1.0 + b);
} else {
a = exp(a);
b = exp(b);
ue = (0.5*a + 1.0 + 0.1%b)/(a + 1.0 + b);
b
}
gamma[0] = ul[0] - ue;
return;

static void exact(double t, double *x, Integer npts,

{

double #*u, Nag_Comm *comm)
/* Exact solution (for comparison purposes) =*/
double a, b, c;
double *e = (double *)comm->p;

Integer ij;

for (i = 0; i < npts; ++1i)

{
a = (x[i] - 0.25 - 0.75*t)/(*xe*x4.0);
b = (0.9%x[1] - 0.325 = 0.495%t) /(*ex2.0);
if (a > 0. && a > b)
{

d03ppc.26 [NP3660/8]

d03 — Partial Differential Equations d03ppc

}

retu

}

static

{
doub
Inte

for

{

3

fmon

retu

a = exp(-a);

c = (0.8*x[i] = 0.4 - 0.24xt)/(*xex4.0);
c = expl(c);

ul[i] = (0.1%c + 0.5 + a)/(c + 1.0 + a);

} else if (b > 0. && b >= a) {

b = exp(-b);

c = (-0.8*x[i] + 0.4 + 0.24*t)/(*xe*4.0);

c = exp(c);

uli] = (0.5%c + 0.1 + b)/(c + 1.0 + b);
} else {

a = exp(a);

b = exp(b);

uli] = (0.5*%a + 1.0 + 0.1*b)/(a + 1.0 + Db);
}

rn;
void monitf (double t, Integer npts, Integer npde, const double x[],
const double ul], const double r[], double fmon[],

Nag_Comm *comm)

le drdx, h;
ger i, k, 1;

(i = 1; i <= npts-1; ++1i)

k = i-1; if (i == 1) k = 1;
1= i+1;
h = 0.5%(x[1-1] - x[k-11);

/* Second derivative =*/

drdx = (R(1, i+1) - R(1, 1i))/h;
fmon[i-1] = drdx; if (fmon[i-1] < O) fmon[i-1] = -drdx;

[npts-1] = fmon[npts-21];

n;

9.2 Program Data

None.

9.3 Program Results

nag_pde_parab_1d_fd_ode_remesh (dO3ppc) Example Program Results

Accuracy requirement = 5.000e-05 Number of points = 61
Remeshing every 3 time steps

e = 0.005
t = 0.200

X 0.3000 0.4000 0.5000 0.6000 0.7000
Approx sol. 0.9968 0.7448 0.4700 0.1l667 0.1018
Exact sol. 0.9967 0.7495 0.4700 0.1672 0.1015
t = 0.400

X 0.4000 0.5000 0.6000 0.7000 0.8000
Approx sol. 1.0003 0.9601 0.4088 0.1154 0.1005
Exact sol. 0.9997 0.9615 0.4094 0.1157 0.1003
t = 0.600

X 0.6000 0.6500 0.7000 0.7500 0.8000
Approx sol. 0.9966 0.9390 0.3978 0.1264 0.1037
Exact sol. 0.9964 0.9428 0.4077 0.1270 0.1033

[NP3660/8] d03ppc.27

d03ppc NAG C Library Manual

t = 0.800

X 0.7000 0.7500 0.8000 0.8500 0.9000
Approx sol. 1.0003 0.9872 0.5450 0.1151 0.1010
Exact sol. 0.9996 0.9878 0.5695 0.1156 0.1008
t = 1.000

X 0.8000 0.8500 0.9000 0.9500 1.0000
Approx sol. 1.0001 0.9901 0.7324 0.1245 0.1004
Exact sol. 0.9999 0.9961 0.7567 0.1273 0.1004
Number of integration steps in time = 205

Number of function evaluations = 4872

Number of Jacobian evaluations = 71

Number of iterations = 518

d03ppc.28 (last) [NP3660/8]

	d03ppc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	npde
	m
	ts
	tout
	pdedef
	npde
	t
	x
	u
	ux
	ncode
	v
	vdot
	p
	q
	r
	ires
	comm
	user
	iuser
	p

	bndary
	npde
	t
	u
	ux
	ncode
	v
	vdot
	ibnd
	beta
	gamma
	ires
	comm
	user
	iuser
	p

	uvinit
	npde
	npts
	nxi
	x
	xi
	u
	ncode
	v
	comm
	user
	iuser
	p

	u
	npts
	x
	ncode
	odedef
	npde
	t
	ncode
	v
	vdot
	nxi
	xi
	ucp
	ucpx
	rcp
	ucpt
	ucptx
	f
	ires
	comm
	user
	iuser
	p

	nxi
	xi
	neqn
	rtol
	atol
	itol
	norm
	laopt
	algopt
	remesh
	nxfix
	xfix
	nrmesh
	dxmesh
	trmesh
	ipminf
	xratio
	con
	monitf
	t
	npts
	npde
	x
	u
	r
	fmon
	comm
	user
	iuser
	p

	rsave
	lrsave
	isave
	lisave
	itask
	itrace
	outfile
	ind
	comm
	saved
	fail

	6 Error Indicators and Warnings
	NE_ACC_IN_DOUBT
	NE_BAD_PARAM
	NE_FAILED_DERIV
	NE_FAILED_START
	NE_FAILED_STEP
	NE_INCOMPAT_PARAM
	NE_INT
	NE_INT_2
	NE_INT_4
	NE_INTERNAL_ERROR
	NE_ITER_FAIL
	NE_NOT_CLOSE_FILE
	NE_NOT_STRICTLY_INCREASING
	NE_NOT_WRITE_FILE
	NE_REAL
	NE_REAL_2
	NE_REAL_ARRAY
	NE_REMESH_CHANGED
	NE_SING_JAC
	NE_TIME_DERIV_DEP
	NE_USER_STOP
	NE_ZERO_WTS

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

